
January 2015 FoxRockX Page 5

Combining Query Results
SQL Server lets you do something other than UNION when
combining the results of two similar queries.

Tamar E. Granor, Ph.D.

We continue our look at T-SQL elements that aren’t
available in VFP’s SQL with a look at the EXCEPT
and INTERSECT operators that let you combine
query results in a way other than putting them all
together. These operators give you more elegant
ways to solve some common problems.
Given that SQL is a set-based language, it shouldn’t
be a surprise to see set-related terms like UNION
and INTERSECT. T-SQL also supports the set the-
ory notion of a complement through the EXCEPT
operator. All three operators are used for combin-
ing the results of multiple queries into a single
result.

Combining query results with
UNION
UNION works pretty much the same way in VFP’s
SQL as in SQL Server. It lets you dump the results
of two or more queries into a single data set.

For example, the query in Listing 1 shows the
CustomerID for any customer who placed orders
in either June, 1997 or March, 1998. (Perhaps there
was a special promotion we want to check on.)
Two separate queries, one to collect customers who
ordered in June, 1997, another to collect those who
ordered in March, 1998, are combined.

Listing 1. The UNION clause lets you combine the results of
multiple queries.
SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 6 ;
 AND YEAR(OrderDate) = 1997 ;
 UNION ;
SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 3 ;
 AND YEAR(OrderDate) = 1998

Of course, we probably want more information
about those customers than their IDs. The query in
Listing 2 (CustomersOrderedEitherMonth.PRG in
this month’s downloads) uses the UNIONed query
in a derived table and collects the name of each rel-
evant company.

Listing 2. You can use a query with a UNION inside other que-
ries.

SELECT CompanyName ;
 FROM Customers ;
 JOIN (;
 SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 6 ;
 AND YEAR(OrderDate) = 1997 ;
 UNION ;
 SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 3 ;
 AND YEAR(OrderDate) = 1998) Ordered ;
 ON Customers.CustomerID = ;
 Ordered.CustomerID ;
 ORDER BY CompanyName ;
 INTO CURSOR csrOrderedInEither

The key rule for using UNION is that the field
lists of all the UNIONed queries have to have the
same number of fields and that corresponding
fields (that is, fields in the same position in the field
lists of the various queries) have to be of compatible
data types.

Before VFP 8, “compatible data types” was quite
strict. Fields actually had to be of the same data type,
and the first query in the UNION determined the
size of each field. But in VFP 8 and 9, the SQL engine
is smarter and can handle similar data types, mak-
ing intelligent decisions about the type and size of
the final result. For example, if one query contains a
character field and the other contains a memo field
in the same position, the final result uses a memo
field.

SQL Server has the same rule not only for
UNION, but for INTERSECT and EXCEPT, and
handles the necessary type conversions behind the
scenes.

Listing 3 (in this month’s downloads as
CustomersOrderedEitherMonth.SQL) shows a SQL
Server query analogous to the VFP example. It collects
the names of those customers who placed orders in
either June, 2007 or March, 2008. Here, the UNION
is in a CTE (common table expression), the results of
which are used to collect the actual customer names.
In AdventureWorks 2008, there are two types of
customers: individuals and stores, so the Customer
table contains foreign keys to both Person and Store.
Some Customers are linked to both, leading to the left
joins in the main query.

Page 6 FoxRockX January 2015

Listing 3. UNION in SQL Server is analogous to UNION in
VFP.
WITH csrEitherMonth (PersonID, StoreID)
AS
(SELECT Customer.PersonID, Customer.StoreID
 FROM Sales.Customer
 JOIN Sales.SalesOrderHeader
 ON Sales.Customer.CustomerID =
 Sales.SalesOrderHeader.CustomerID
 WHERE MONTH(SalesOrderHeader.OrderDate) = 6
 AND YEAR(OrderDate) = 2007
UNION
SELECT Customer.PersonID, Customer.StoreID
 FROM Sales.Customer
 JOIN Sales.SalesOrderHeader
 ON Sales.Customer.CustomerID =
 Sales.SalesOrderHeader.CustomerID
 WHERE MONTH(SalesOrderHeader.OrderDate) = 3
 AND YEAR(OrderDate) = 2008)

SELECT LTRIM(LastName) + ', ' +
 LTRIM(FirstName) AS Person,
 Name AS Store
 FROM csrEitherMonth
 LEFT JOIN Person.Person
 ON csrEitherMonth.PersonID =
 Person.Person.BusinessEntityID
 LEFT JOIN Sales.Store
 ON csrEitherMonth.StoreID =
 Store.BusinessEntityID
 ORDER BY Person, Store

By default, records that are identical in differ-
ent initial results of UNION are consolidated in the
final result. (A side effect of this behavior is that the
final result is sorted on the first field.) You can over-
ride that behavior by including the ALL keyword.

Intersections instead of unions
What if the question is which customers made pur-
chases in both of the specified months rather than
either of them? Just as in Math class, we want to
switch from a union to an intersection.

In VFP, have to take a totally different approach,
using a pair of subqueries in the WHERE clause, as
in Listing 4 (included in this month’s downloads
as CustomersOrderedTwoMonths.PRG). Each sub-
query collects data for a single month and the main
query keeps only those records in the results of
both subqueries.

Listing 4. Getting the intersection of two results in VFP calls for
a pair of subqueries.
SELECT CompanyName ;
 FROM Customers ;
 WHERE CustomerID IN ;
 (SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 6 ;
 AND YEAR(OrderDate) = 1997) ;
 AND CustomerID IN ;
 (SELECT CustomerID ;
 FROM Orders ;
 WHERE MONTH(OrderDate) = 3 ;
 AND YEAR(OrderDate) = 1998) ;
 ORDER BY CompanyName ;
 INTO CURSOR csrOrderedInBoth

In SQL Server, though, we can get the desired
result by simply changing UNION to INTERSECT,
as in Listing 5 (included in this month’s down-
loads as CustomersOrderedTwoMonths.PRG). As
you’d expect, INTERSECT performs an intersec-
tion between the two query results, so the final
results contains only records that appear in both.
As before, the INTERSECTed query is used in a
CTE, and the main query uses that list of PersonIDs
and StoreIDs to retrieve the actual names.

Listing 5. The INTERSECT keyword finds the intersection of
the two results, keeping only those records that appear in both.
WITH csrBothMonths (PersonID, StoreID)
AS
(SELECT Customer.PersonID, Customer.StoreID
 FROM Sales.Customer
 JOIN Sales.SalesOrderHeader
 ON Sales.Customer.CustomerID =
 Sales.SalesOrderHeader.CustomerID
 WHERE MONTH(SalesOrderHeader.OrderDate) = 6
 AND YEAR(OrderDate) = 2007
INTERSECT
SELECT Customer.PersonID , Customer.StoreID
 FROM Sales.Customer
 JOIN Sales.SalesOrderHeader
 ON Sales.Customer.CustomerID =
 Sales.SalesOrderHeader.CustomerID
 WHERE MONTH(SalesOrderHeader.OrderDate) = 3
 AND YEAR(OrderDate) = 2008)

SELECT LTRIM(LastName) + ', ' +
 LTRIM(FirstName) AS Person,
 Name AS Store
 FROM csrBothMonths
 LEFT JOIN Person.Person
 ON csrBothMonths.PersonID =
 Person.Person.BusinessEntityID
 LEFT JOIN Sales.Store
 ON csrBothMonths.StoreID =
 Store.BusinessEntityID
 ORDER BY Person, Store

Finding unmatched records
One of the questions I see most frequently online
is how to find every record in one table for which
there’s no matching record in a second table. For
example, find all customers who placed no orders
in a given time period.

In set theory, this is called the “complement” of
the two sets. Note that unlike unions and intersec-
tions, complements are not commutative; that is, it
matters which comes first. If you have sets A and B,
A complement B (written “A-B”) gives you all the
members of A that are not in B, but B complement
A is all the members of B that are not in A.

Using SQL, matching records in two tables is
easy; just join the tables on the shared field, but
finding those with no matches in a little trickier.
There are a couple of ways to do it in VFP, but SQL
Server provides an elegant and direct way to write
this query.

The VFP approach I prefer uses a subquery,
which selects all the relevant records in the second
table. Then a NOT IN condition eliminates those

January 2015 FoxRockX Page 7

records from the final result. For example, Listing 6
shows a query that finds all Northwind customers
who placed no orders in 1998. (It’s included in this
month’s downloads as CustomerNoOrders.PRG.)

Listing 6. One way to find all customers who haven’t placed an
order in a given period is using NOT IN with a subquery.
SELECT CompanyName ;
 FROM Customers ;
 WHERE CustomerID NOT IN (;
 SELECT CustomerID ;
 FROM Orders ;
 WHERE YEAR(OrderDate) = 1998) ;
 ORDER BY Companyname ;
 INTO CURSOR csrNoOrders

You can accomplish the same thing using an
outer join by testing the results for null in one of
the fields of the second table. Listing 7 (Custom-
erNoOrdersJoin.PRG in this month’s downloads)
shows this approach to the same problem. The
outer join between Customers and Orders pro-
vides a list of all customers. Those who placed any
orders in 1998 are matched with the details of those
orders. The ISNULL(OrderID) filter eliminates
those records and keeps only the customers who
had no matches.
Listing 7. You can also use an outer join to find unmatched
records.
SELECT CompanyName ;
 FROM Customers ;
 LEFT JOIN Orders ;
 ON Customers.CustomerID =
 Orders.CustomerID ;
 AND YEAR(OrderDate) = 1998 ;
 WHERE ISNULL(OrderID) ;
 ORDER BY Companyname ;
 INTO CURSOR csrNoOrders

VFP appears to handle the two queries the same
way internally. At least, SYS(3054) shows identical
optimization.

You can solve the problem using the same
approaches in SQL Server (see CustomersNoOrder-
sSubquery.SQL and CustomersNoOrdersLeftJoin.
SQL in this month’s downloads), but there’s a bet-
ter, more readable approach.

The EXCEPT operator gives you the comple-
ment of two query results, that is, all the records in
the first result that are not in the second result. List-
ing 8 shows a query that returns the CustomerID
for every customer that placed no orders in 2008.

Listing 8. Use EXCEPT to find all the records in one table that
aren’t matched in another.
SELECT CustomerID
 FROM Sales.Customer
EXCEPT
SELECT Sales.Customer.CustomerID
 FROM Sales.SalesOrderHeader
 JOIN Sales.Customer
 ON Sales.SalesOrderHeader.CustomerID =
 Sales.Customer.CustomerID
 WHERE YEAR(OrderDate)= 2008

The first query here simply pulls every
CustomerID from the Customer table. The second
collects the CustomerID of those customers who
places orders in 2008. The EXCEPT operator then
removes the second group from the first, giving us a
list of customers with no orders in 2008.

The query that provides the individual and
store names (shown in Listing 9 and included in
this month’s downloads as CustomersNoOrders.
SQL) uses the query from Listing 8 in a CTE and
then does the necessary joins to add the names.

Listing 9. Making the query using EXCEPT into a CTE makes
it easy to collect additional information about the resulting re-
cords.
WITH csrNoSales (PersonID, StoreID)
AS

(SELECT PersonID, StoreID
 FROM Sales.Customer
EXCEPT
SELECT PersonID, StoreID
 FROM Sales.SalesOrderHeader
 JOIN Sales.Customer
 ON Sales.SalesOrderHeader.CustomerID =
 Sales.Customer.CustomerID
 WHERE YEAR(OrderDate)= 2008)

SELECT LTRIM(LastName) + ', ' +
 LTRIM(FirstName) AS Person,
 Name AS Store
 FROM csrNoSales
 LEFT JOIN Person.Person
 ON csrNoSales.PersonID =
 Person.BusinessEntityID
 LEFT JOIN Sales.Store
 ON csrNoSales.StoreID =
 Store.BusinessEntityID
ORDER BY Person, Store

As with many of the other items covered in this
series, understanding INTERSECT and EXCEPT
is probably easier than remembering to use them
when the situation arise.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

